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Background - Counterfactuals

Counterfactuals

Yxi denotes the potential outcome

Y of individual i under treatment x.

E.g. my (i) sleep quality tonight (Y)

if I ate pasta (x = 1) instead of

oats (x = 0) for dinner.

Problem

I We are interest in E[Yx=0]− E[Yx=1]

I We know E[Y|x = 0]− E[Y|x = 1]

Hence, we need a method for translating

our contrafactual outcomes of interest

into observable quantities.

Solution: Pearl’s do-calculus, which

requires 3 assumptions.
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Background - Identifiability Assumption

1. Consistency (Yxi = Yi, if Xi = x)

The counterfactual outcome Yxi corresponds to the observed outcome Yi if

individual i received treatment x in the real world.

Joshua P. Entrop Introduction to DAGs Läkemedelsverket, 2024 2 / 10



Background - Identifiability Assumption

1. Consistency (Yxi = Yi, if Xi = x)

2. Conditional Exchangeability (Yx ⊥⊥ X|L)

The counterfactual outcome is independent of the observed treatment given

some adjustment set L.
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Background - Identifiability Assumption

1. Consistency (Yxi = Yi, if Xi = x)

2. Conditional Exchangeability (Yx ⊥⊥ X|L)

3. Positivity (P[X = x, L = l] > 0)

It should in theory be possible to identify both treated and untreated

individuals for each possible combination of the variables included in the

adjustment set L.
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Idetifiability Assumptions and DAGs

1. Consistency (Yxi = Yi, if Xi = x)

2. Conditional Exchangeability (Yx ⊥⊥ X|L)
3. Positivity (P[X = x, L = l] > 0)

How to asses exchangeability?

Judea Pearl

vs.

Donald B. Rubin
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The Basic Ingridiens of DAGs

Mathematically speaking, a DAG is a visual

representation of a joint distribution of variables

defined by:

I Nodes: Variables in our causal network

I Arrows: Direction of causation

I Note that the absence of an arrow is a

stronger assumption than the presence of it,

i.e., complete independence.
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Figure 1. A direct effect
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The Basic Ingridiens of DAGs

Mathematically speaking, a DAG is a visual

representation of a joint distribution of variables

defined by:

I Nodes: Variables in our causal network

I Arrows: Direction of causation

I Note that the absence of an arrow is a

stronger assumption than the presence of it,

i.e., complete independence.

X Y

L

S

Figure 1. A confounder
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The Basic Ingridiens of DAGs

Mathematically speaking, a DAG is a visual

representation of a joint distribution of variables

defined by:
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Figure 1. A collider
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The Basic Ingridiens of DAGs

Mathematically speaking, a DAG is a visual

representation of a joint distribution of variables

defined by:

I Nodes: Variables in our causal network

I Arrows: Direction of causation

I Note that the absence of an arrow is a

stronger assumption than the presence of it,

i.e., complete independence.
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Figure 1. Conditioned on a collider
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From Counterfactuals to Reality via do-calculus

Back-door criteria

We know as a results from Pearl’s do-calculus that exchangability holds if

there is no open path between X and Y in a DAG in which all outgoing arrows

from X are removed.
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A Randomised Experiment

R T Y

P

S

M U

Figure 4. DAG of a randomised experiment

I R: Randomisation

I T: Treatment

I Y: Outcome (weight loss)

I P: Prognostic factors (baseline BMI)

I S: Collider (fatigue)

I M: Mediator (physical activity)

I U: Confounder (SES)

I C: Drop out
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A Blinded Randomised Experiment
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Figure 4. DAG of a blinded randomised experiment

I R: Randomisation

I T: Treatment

I Y: Outcome (weight loss)

I P: Prognostic factors (baseline BMI)

I S: Collider (fatigue)

I M: Mediator (physical activity)

I U: Confounder (SES)

I C: Drop out

Joshua P. Entrop Introduction to DAGs Läkemedelsverket, 2024 7 / 10



A Blinded Randomised Experiment with ICEs

R

T Y1 Y2

C My2

U

Figure 5. DAG of an ICE mechanism

I R: Randomisation

I T: Treatment

I C: ICE (treatment discontinuation)

I Yt: Outcome at time t

I U: Confounder (behavioural trait)

I My2: A mechanism for assigning a
value to Y.
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A Blinded Randomised Experiment with Landmark Analysis

R

T Y1 Y2

U

Figure 6. DAG of a landmark analysis in a RCT

I R: Randomisation

I T: Treatment

I Yt: Outcome at time t (survival)

I U: Confounder (patient global health)
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Contact Information

� joshua.entrop@ki.se

� joshua-entrop.com
Link to the slides and materials
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